Skip to main content

Magazine References

Mar – Apr 2022


Pg 6-7 Bike, bus or boots: The benefits of active transportation

References
  1. Australian Bureau of Statistics Australian Census 2010: abs.gov.au, accessed 15 February 2022.
  2. Fishman E et al (2015), Adult active transport in the Netherlands: An analysis of its contribution to physical activity requirements, PLoS ONE, 10(4): e0121871. https://doi.org/10.1371/journal.pone.0121871
  3. Church T et al (2011), Trends over 5 decades in US occupation-related physical activity and their associations with obesity, PLoS ONE, 6(5): e19657.
  4. Alexander L M et al,The broader impact of walking to school among adolescents: sevenâ€�day accelerometry based study, BMJ, 20053311061–1062.
  5. Kennedy R et al (2007), Evaluating the effects of a low volume stairclimbing programme on measures of health-related fitness in sedentary office workers, J Sports Sci Med, 6(4): 448-454.
  6. Holterman A et al (2021), The physical activity paradox in cardiovascular disease and all-cause mortality: the contemporary Copenhagen general population study with 104 046 adults, Eur Heart J, 42(15): 1499-1511. Doi 10.1093/eurheartj/ehab087.
  7. Evenson K, Wen F (2010), National trends in self-reported physical activity and sedentary behaviors among pregnant women: NHANES 1999-2006, Prev Med Mar, 50(3): 12.
  8. Zapata-Diomedi et al (2017), A shift from motorised travel to active transport: What are the potential health gains for an Australian city? 11, doi.org/10.137/journal.pone.0184799
  9. Ratzlaff CR et al (2010), Good news, bad news: sports matter but occupational and household activity really matter – sport and recreation unlikely to be a panacea for public health, Br J Sports Med., 46: 699-701.

Pg 14 – 16 The adaptive nervous system: Exercise enrichment for cognitive resilience

References
  1. Gelfo F et al (2018), The neuroprotective effects of experience on cognitive functions: Evidence from animal studies on the neurobiological bases of brain reserveNeuroscience.
  2. Raichlen DA, Alexander GE (2017), Adaptive capacity: An evolutionary-neuroscience model linking exercise, cognition, and brain health, Trends Neurosci.
  3. Gallaway PJ et al (2017), Physical activity: A viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease and vascular dementia in older adults, Brain Sciences.
  4. Landrigan JF et al (2020), Lifting cognition: A meta-analysis of effects of resistance exercise on cognition, Psychol Res.
  5. Karssemeijer E et al (2017), Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysisAgeing Research Reviews.
  6. Voss MW et al (2010), Plasticity of brain networks in a randomised intervention trial of exercise training in older adults, Front. Age Neurosi.
  7. De la Rosa A et al (2020), Physical exercise in the prevention and treatment of Alzheimer’s disease, J Sport Health Sci.
  8. Basso JC, Suzuki WA (2017), The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A Review, Brain Plast.

Pg 18-20 Understanding carbs

References
  1. British Dietetic Association. Factsheets. Carbohydrates. Accessed here: https://www.bda.uk.com/resource/carbohydrates.html
  2. Slavin J et al (2014), Carbohydrates, Adv Nutr., 14, 5(6): 760-1.
  3. George TW, Paterson E, Waroonphan S, Gordon MH, Lovegrove JA (2012), Effects of chronic consumption of fruit and vegetable puree-based drinks on vasodilation, plasma oxidative stability and antioxidant status, Hum. Nutr. Diet., 25: 477-487.
  4. WHO (2003) Diet, Nutrition and the Prevention of Chronic diseases. Report of a Joint WHO/FAO Expert Consultation. Geneva: World Health Organization.
  5. Greenwood et al (2013), Glycemic Index, Glycemic Load, Carbohydrates and Type 2 Diabetes. Systematic review and dose-response meta-analysis of prospective studies. Diabetes Care, 36(12): 4,166-71.
  6. Ludwig D et al (2014), High Glycemic Index Foods, Overeating and Obesity, Am J Clin Nutr., 100(1): 278-88.
  7. Chawla S et al (2014), The effect of low-fat and low-carbohydrate diets on weight loss and lipid levels: a systematic review and meta-analysis, Nutrients, 12(12): 3,774.
  8. Afshin A (2020), Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke and diabetes: a systematic review and meta-analysis, 9, 12(12): 3,774.
  9. Department of Health (2011), National Diet and Nutrition Survey: Headline Results from Years 1 and 2 (Combined) of the Rolling Programme 2008/9-2009/10
  10. Nutritics Nutrition Software Analysis.
  11. Brinkworth G et al (2009), Long-term effects of a very low carbohydrate diet and a low-fat diet on mood and cognitive function, Arch Intern Med., 169(20): 1,873-80.
  12. Den Besten G et al (2013), The role of short-chain fatty acids in the interplay between diet, gut microbiota and host energy metabolism, J Lipid Res, 54(9): 2,325-40.
  13. Paoli et al (2013), Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets, European Journal of Clinical Nutrition, 67: 789-796.
  14. Phinney SD, Ketogenic diets and physical performance, Nutr Metab. 1, 1(1): 2.
  15. Lane A et al, Influence of dietary carbohydrates intake on the free testosterone: Cortisol ratio responses to short-term intensive exercise training, Eur J Appl Physiol., 108(6): 1,125-31.
  16. Howarth K et al (2010), Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery, J App Physiol., 109(2): 431-38.

Pg 22-25 Cool it: The science behind cooling for exercise recovery

References
  1. Allan R, Akin B, Sinclair J, Hurst H, Alexander J, Malone JJ, Naylor A, Mawhinney C, Gregson W, Ihsan, M (2021), Athlete, coach and practitioner knowledge and perceptions of post‑exercise cold‑water immersion for recovery: a qualitative and quantitative exploration, Sport Sciences for Health, https://doi.org/10.1007/s11332-021-00839-3
  1. Ihsan M, Watson G, Abbiss CR (2016), What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise? Sports Med.,46:1,095-1,109. https://doi.org/10.1007/s40279-016-0483-3
  1. Herrera E, Sandoval MC, Camargo DM, Salvini TF (2010), Motor and sensory nerve conduction are affected differently by ice pack, ice massage, and cold water immersion, Phys Ther., 90(4): 581–591. https://doi.org/10.2522/ptj.20090131
  1. Malta ES, Dutra YM, Broatch JR, Bishop DJ, Zagatto AM (2021), The effects of regular cold-water immersion use on training-induced changes in strength and endurance performance: a systematic review with meta-analysis, Sports Med. 51(1): 161-174. doi: 10.1007/s40279-020-01362-0. PMID: 33146851.
  1. Bouzigon R, Dupuy O, Tiemessen I, De Nardi M, Bernard J-P, Mihailovic T, Theurot D, Miller ED, Lombardi G and Dugué BM (2021), Cryostimulation for Post-exercise Recovery in Athletes: A Consensus and Position Paper,  Sports Act. Living,3:688828. doi: 10.3389/fspor.2021.688828
  1. Grainger A, Malone J, Costello JT, Bleakley CM and Allan R (2021), The BASES Expert Statement on the use of cooling therapies for post exercise recovery, The Sport and Exercise Scientist, 70: 8-9.

Pg 30-32 Periodisation – what’s it all about?

References
  1. Gamble P (2013), Strength and conditioning for team sports: Sport-specific physical preparation for high performance, Routledge, Jan 25.
  2. Haff GG (2016), The essentials of periodisation. Strength and Conditioning for Sports Performance, 406.
  3. Dubois R, Paillard T, Lyons M, McGrath D, Maurelli O, Prioux J (2017), Running and metabolic demands of elite rugby union assessed using traditional, metabolic power, and heart rate monitoring methods, Journal of Sports Science & Medicine, 16(1): 84.
  4. Duhig S, Shield AJ, Opar D, Gabbett TJ, Ferguson C, Williams M (2016), Effect of high-speed running on hamstring strain injury risk, British Journal of Sports Medicine, 50(24): 1,536-40.
  5. Cunanan AJ, DeWeese BH, Wagle JP, Carroll KM, Sausaman R, Hornsby WG, Stone MH (2018), The general adaptation syndrome: A foundation for the concept of periodization, Sports Medicine, 48(4): 787-797.
  6. Ravé G, Granacher U, Boullosa D, Hackney AC, Zouhal H (2020), How to Use Global Positioning Systems (GPS) Data to Monitor Training Load in the ‘Real World’ of Elite Soccer, Frontiers in Physiology, 20, 11: 944.
  7. Lambert MI, Borresen J (2010), Measuring training load in sports, International journal of sports physiology and performance, 5(3): 406-11.
  8. Hawley JA (2008), Specificity of training adaptation: time for a rethink?, The Journal of Physiology, 586 (Pt 1):1.
  9. Bishop PA, Jones E, Woods AK (2008), Recovery from training: A brief review, The Journal of Strength & Conditioning Research, 22(3): 1,015-24.
  10. Jeffreys I (2005), A multidimensional approach to enhancing recovery, Strength and Conditioning Journal, 27(5): 78.
  11. Turner A, Comfort P (2017), Periodisation, In Advanced Strength and Conditioning(pp 116-136). Routledge.
  12. Haff GG (2019), 14 periodisation strategies for young athletes, Strength and Conditioning for Young Athletes: Science and Application, 281.
  13. Issurin VB (2010), New horizons for the methodology and physiology of training periodization, Sports Medicine, 40(3): 189-206.
  14. Kiely J (2012), Periodisation paradigms in the 21st century: Evidence-led or tradition-driven?, International Journal of Sports Physiology and Performance, 7(3): 242-250.
  15. Issurin VB (2016), Benefits and limitations of block periodized training approaches to athletes’ preparation: A review, Sports Medicine, 46(3): 329-338.
  16. Naclerio F, Moody J, Chapman M (2013), Applied periodization: A methodological approach, Journal of Human Sport and Exercise, 8(2): 350-366.
  17. Kiely J (2018), Periodization theory: Confronting an inconvenient truth, Sports Medicine, 48(4): 753-764.
  18. Stone MH (2003), Periodization Strategies, Strength and Conditioning Journal.